

Solid organ transplant: *when* & *which variants do best?* **Trials** – *when?*

Angela Dispenzieri, M.D. Professor of Medicine & of Lab. Medicine

Scottsdale, Arizona

Rochester, Minnesota

Patient Workshop October 31, 2015

Jacksonville, Florida

Mayo Clinic College of Medicine Mayo Clinic Comprehensive Cancer Center

 \bigcirc

Hereditary systemic amyloidoses

Fibril name	Mutated precursor Protein	Target Tissues
ATTR	Transthyretin	PNS, ANS, heart, eye, leptomeninges, tenosynovium
AFib	Fibrinogen α -chain	Kidney
ALys	Lysozyme	Kidney, primarily
AApoAI	Apolipoprotein A-I	Heart, liver, kidney, PNS, testis, larynx, skin
AApoAll	Apolipoprotein A-II	Kidney
AGel	Gelsolin	PNS, cornea
ACys	Cystatin C	PNS, skin
ABri	Abri-PP	CNS
Αβ2Μ	β2-microglobulin	Musculoskeletal system

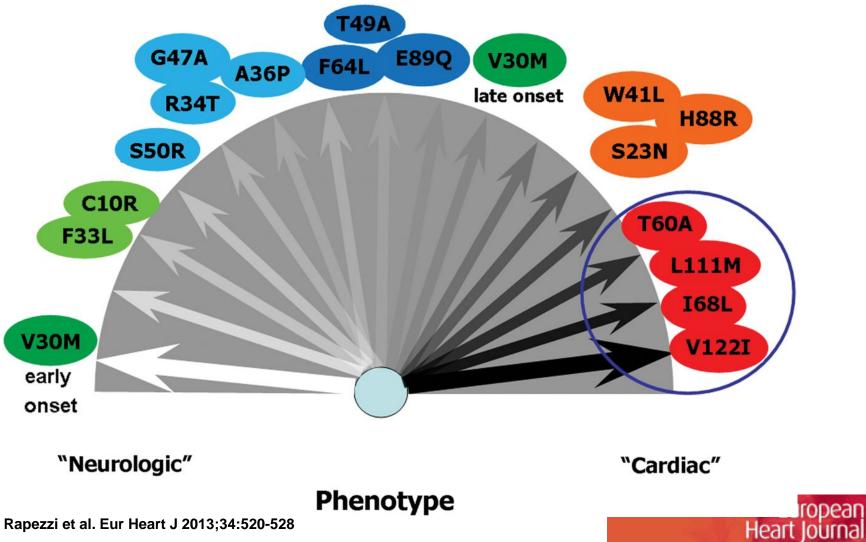
Strange truths about hereditary amyloidosis

- For most types, the source of the 'disease driving' building blocks (mutant proteins) is the liver, although the liver otherwise works fine
- For most types, the disease driving organ (liver) isn't doesn't 'appear' sick

Transplant Approaches

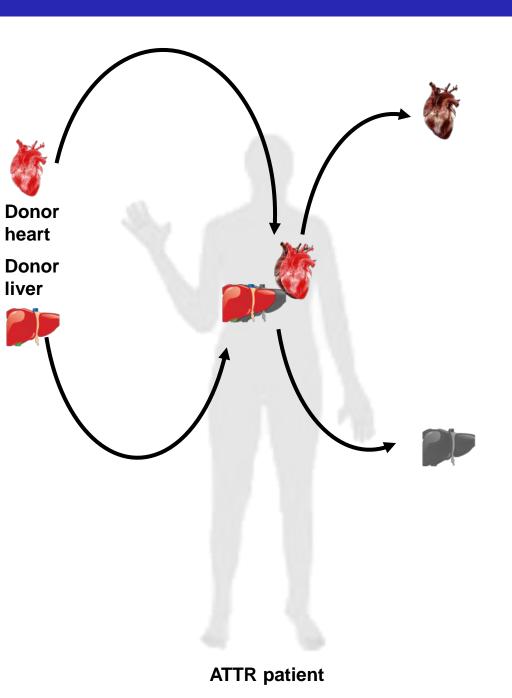
Remove mutant protein producer Liver transplant

2. Replace symptomatic organ


- Possible for kidney or heart
- Not possible for nerve or guts

3. Do both

 \bigcirc


Spectrum of genotype–phenotype correlations in **transthyretin**-related amyloidosis. 112 mutations causing disease (2013)

Claudio Rapezzi et al. Eur Heart J 2013;34:520-528

- Remove mutant protein producer (liver transplant)
- 2. Replace symptomatic organ kidney or heart)
- **3.** Do 1 and 2?

ATTR Transplant Trivia

- First OLT for ATTR in 1990
- First domino liver transplant in 1995
- Partial liver transplants since 1995
- ATTR patients do not meet criteria for liver transplant since "normal" liver

Results from the Familial World Transplant Registry

Reporting centers and number of transplants performed (Dec 31, 2013)

COUNTRY	CITY	HOSPITAL		North		USA	Rochester	Mayo Clinic	47	127	
COUNTRY	CITY	HOSPITAL	No	No of TX/Country			Burlington	Lahey Clinic Medical Center	21		
			TX	IN, Country			Boston	NEDH/Harvard Medical	14		
Portugal	Lisbon	Hospital Curry Cabral	354	948				School	1.1		
	Porto	Hospital Sto Antonio	327		all the star	San Francisco		11			
	Coimbra	Coimbra University Hospital	260				Miami	Jackson Memorial	8		
	Porto	Hospital S João	7				Phoenix	Mayo Clinic	6		
							Pittsburgh	Thomas E Starzl Transpl. Institute	4		
France	Villejuif	Hospital Paul Brousse/Kremlin Bicêtre	227	267			Philadelphia	The Penn Transplant Center	3		
	Marseille	Hospital de la Conception	10				Cleveland	Cleveland Clinic	2		
	Strasbourg	Hospital Hautpierre	10				Charleston	Medical University of South	2		
	Lyon	Hospital Edouard Herriot	8				C 1.	Carolina			
	Clichy	Hospital Beaujon	7				Chicago	Northwestern Memorial Hospital	2		
	Bordeaux	Pellegrin Hospital	5				Chapel Hill	UNC Comprehensive Transplant Center	2		
Sweden	Stockholm	Karolinska University Hospital Huddinge	130	151			Baltimore	University of Maryland	2		
							Cleveland	University Hospitals of	1		
	Gothenburg	Sahlgrenska University	21					Cleveland			
		Hospital					Denver	University Hospital	1		
							Durham	Duke University Medical Center	1		

- Male 57%
- Age at transplant: 38.2 (range 21-73)
- Duration of disease: 3 years (0-30 years)

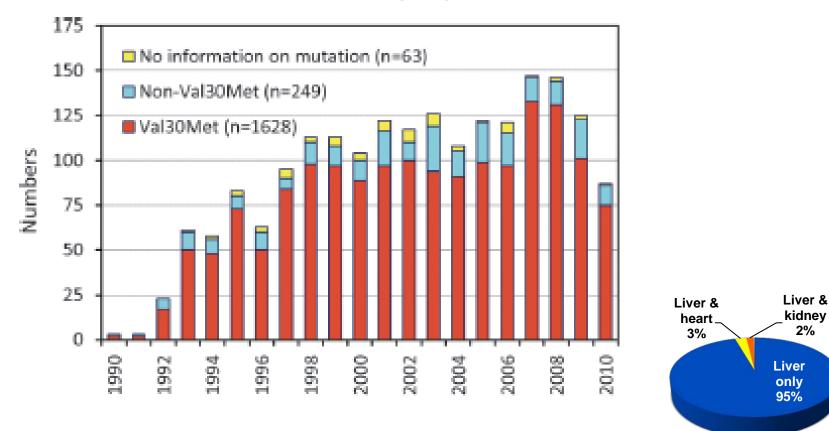
Spain

Barcelona

Murcia

Hospital de Bellvitge

Hospital Virgen de la

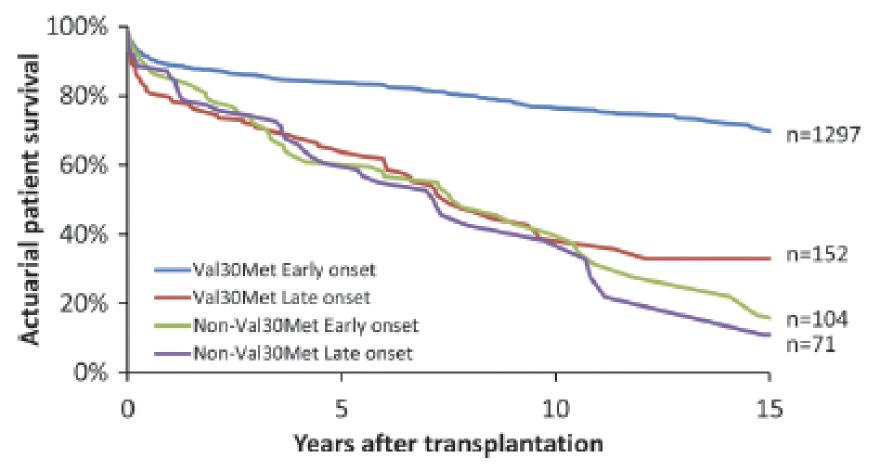

35

27

101

Liver Transplantation for Hereditary Transthyretin Amyloidosis: After 20 Years Still the Best Therapeutic Alternative?

1940 patients undergoing 2127 liver transplants



Ericzon, B.G., et al., Transplantation, 2015. 99(9): p. 1847-54.

MAYO CLINIC

Survival post-OLT for Familial ATTR by mutation

Ericzon, B.G., et al., Transplantation, 2015. 99(9): p. 1847-54.

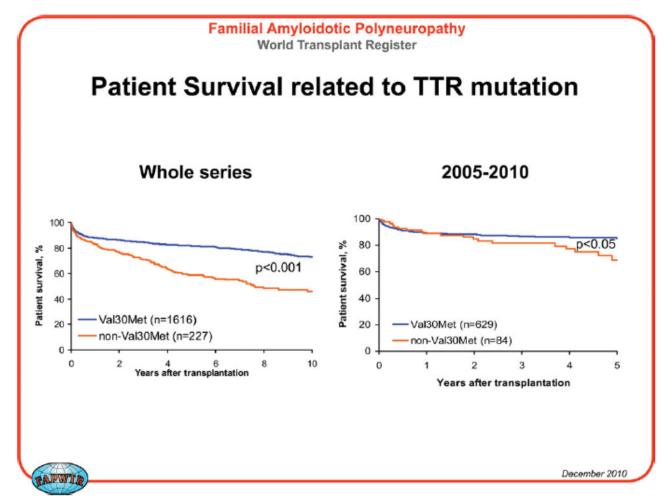
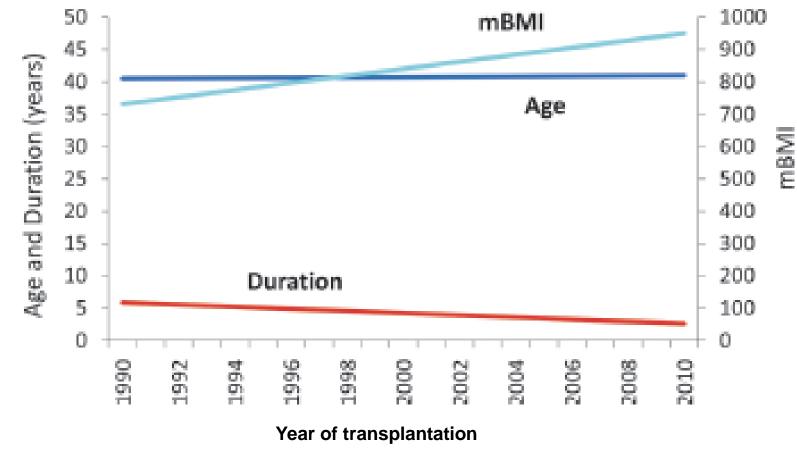
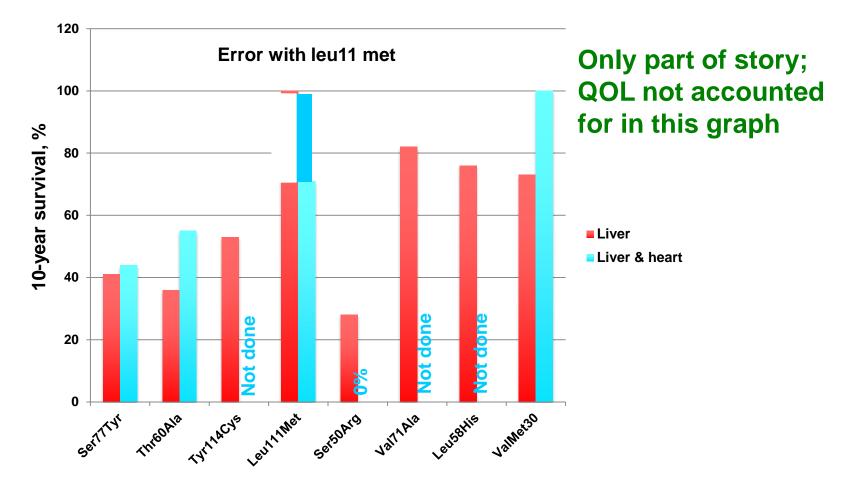



FIGURE 2. Patient survival after liver transplantation for TTR amyloidosis comparing data for Val30Met subjects with composite data for subjects with all other TTR mutations reported to the FAP World Transplant Registry. Used with permission.

Progression noted in heart, vitreous opacities, autonomic nervous system Typially less cardiac deposition if heart transplant done same time

Benson, M.D. Muscle & nerve, 2013. 47(2): p. 157-62.

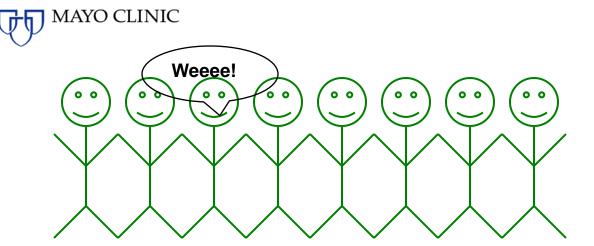


Ericzon, B.G., et al., Transplantation, 2015. 99(9): p. 1847-54.

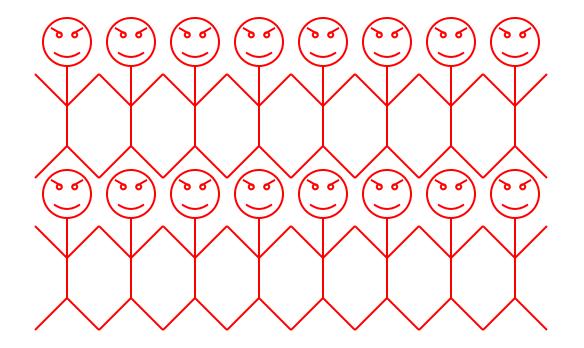
MAYO CLINIC

10-year Survival with Liver or Liver/Heart Transplants FAPWTR

Ericzon, B.G., et al., Transplantation, 2015. 99(9): p. 1847-54.


Heart Transplantation for Hereditary ATTR

- Mayo series of 40 liver transplants including 21 who had heart and liver
- Trend for a superior 5-year overall survival among those receiving heart and liver transplant (85%) versus those receiving liver transplant only (52%), p=0.057


V30M Outcomes


- Neuropathy stable or improved in up to 40%
- Nutrition improves in up to 80%
- Cardiac progresses in ~50%
- Kidney involvement unaffected
- Eye deposits progress

Normal ATTR
joining the party

FAPWTR Liver Transplantation Conclusions

- OLT for familial amyloidotic polyneuropathy at 120/year worldwide
- Modified body mass index, disease duration, type of mutation, and degree of autonomic involvement are important risk factors
- Infection and cardiac causes account for approximately 45% of deaths

Ericzon, B.G., et al., Transplantation, 2015. 99(9): p. 1847-54.

What Does It All Mean?

- Known:
 - Survival improved with liver transplant in V30M
 - Most effective if early
 - Major benefit is nutrition
 - Combined liver + heart and liver + kidney feasible

What Does It All Mean?

• Unknown:

- When is it futile?
- Which mutations benefit?
- If heart involved need combined heart + liver?
- Is amyloid halted, slowed, reversed or accelerated?

Drug Trials for ATTR

NCT Number	Title
NCT01777243	A Study to Evaluate the Safety of GSK2398852 When Co-administered
NCT01777243	With GSK2315698 in Patients With Systemic Amyloidosis
	The Study of an Investigational Drug, Patisiran (ALN-TTR02), for the
NCT02510261	Treatment of Transthyretin (TTR)-Mediated Amyloidosis in Patients
	Who Have Already Been Treated With ALN-TTR02 (Patisiran)
NCT01960348	APOLLO: The Study of an Investigational Drug, Patisiran (ALN-TTR02),
NC101900348	for the Treatment of Transthyretin (TTR)-Mediated Amyloidosis
NCT02175004	Open-Label Extension Assessing Long Term Safety and Efficacy of ISIS-
NC102175004	TTR Rx in Familial Amyloid Polyneuropathy (FAP)
NCT01737398	Efficacy and Safety of ISIS-TTR Rx in Familial Amyloid Polyneuropathy
NCT00925002	Safety And Efficacy Evaluation Of Fx-1006A In Subjects With
NC100923002	Transthyretin Amyloidosis
NCT02191826	Study of SOM0226 in Familial Amyloid Polyneuropathy

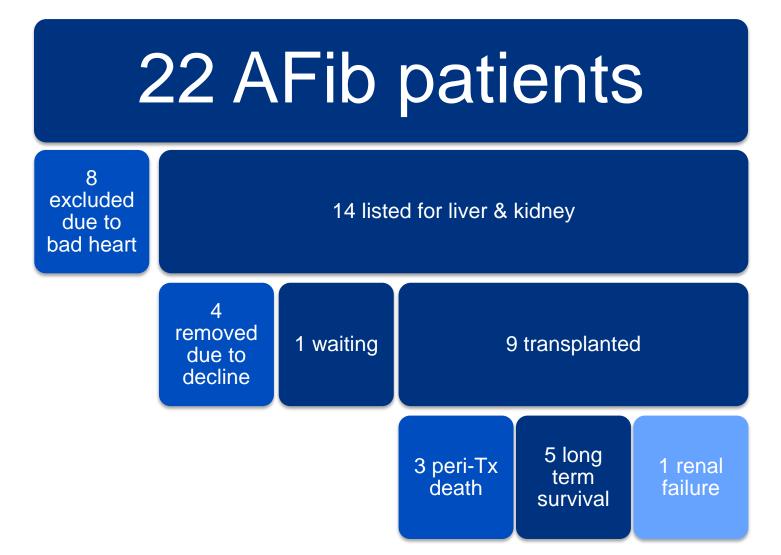
 \bigcirc

Hereditary, systemic amyloidoses

	Fibril name	Mutated precursor Protein	Target Tissues			
	ATTR	Transthyretin	PNS, ANS, heart, eye, leptomeninges, tenosynovium			
>	AFib	Fibrinogen α -chain	Kidney			
	ALys	Lysozyme	Kidney, primarily			
	AApoAI	Apolipoprotein A-I	Heart, liver, kidney, PNS, testis, larynx, skin			
	AApoAll	Apolipoprotein A-II	Kidney			
	AGel	Gelsolin	PNS, cornea PNS, skin			
	ACys	Cystatin C				
	ABri	Abri-PP	CNS			
	Αβ2Μ	β2-microglobulin	Musculoskeletal system			

Fibrinogen A α

- Most common of hereditary renal amyloidoses (Ostertag 1932)
- First mutation described by Dr. Benson, 1993
- Middle age presentation
- If kidney replacement alone, graft fails in 1-7 years with 10-year graft survival of 5% (vs 65%)



- 1. Remove mutant protein producer (liver transplant)
- 2. Replace symptomatic organ kidney or heart)
- Donor liver Donor kidney

3. Do 1 and 2

Hereditary fibrinogen A alpha-chain amyloidosis.

Stangou AJ, Banner NR, Hendry BM, et al. *Blood*. 2010;115(15):2998-3007.

Conclusions

- Liver (± heart) transplant still plays a role in ATTR ValMet30 patients
 - Other mutations, less certain
- Exciting that other means of reducing the ATTR may be on the horizon
- For AFIB, liver + kidney is best
- Early diagnosis, better data collection is imperative regardless

Thank you for your attention

And Happy Halloween ©!